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The 1999 Nobel Prize in Chemistry went to Professor 
Ahmed Zewail of Cal Tech for ultrafast spectroscopy.

Zewail used ultrafast-laser techniques to study how atoms in 
a molecule move during chemical reactions.
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The Dilemma

In order to measure 
an event in time,
you need a shorter one.

To study this event, you need a 
strobe light pulse that’s shorter.

Photograph taken by Harold Edgerton, MIT

But then, to measure the strobe light pulse, 
you need a detector whose response time is even shorter.

And so on…

So, now, how do you measure the shortest event?



We must measure an ultrashort laser pulse’s
intensity and phase vs. time or frequency.

A laser pulse has the time-domain electric field:

E I(t)1/ 2 exp [ iω0t – iφ(t) ] }

Intensity Phase

(t) = Re {

(neglecting the
negative-frequency
component)

Equivalently, vs. frequency:

E(ω) = Re {
~

S(ω−ω0)1/2

Spectrum

exp [ -iϕ (ω–ω0)] }

Spectral 
Phase

Knowledge of the intensity and phase or the spectrum and spectral phase
is sufficient to determine the pulse.



Pulse Measurement in the Time Domain: Detectors

Detectors are devices that emit electrons in response to photons.

Examples:  Photo-diodes, Photo-multipliers
Detector

Detector
Another symbol
for a detector:

Detectors have very slow rise and fall times:  ~ 1 nanosecond.

As far as we’re concerned, detectors have infinitely slow responses.
They measure the time integral of the pulse intensity from –∞ to +∞:

Vdetector ∝ E(t) 2

−∞

∞

∫ dt

The detector output voltage is proportional to the pulse energy.
By themselves, detectors tell us little about a pulse.



Pulse Measurement in the Frequency Domain:  
The Spectrometer
The spectrometer measures the spectrum, of course.  Wavelength varies
across the camera, and the spectrum can be measured for a single pulse.
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Mirror
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Broad-
band
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“Imaging spectrometers” allow many spectra to be measured 
simultaneously, one for each row of a 2D camera.



Pulse Measurement in the Time Domain:  
The Michelson Interferometer

Measuring the interferogram is equivalent to measuring the spectrum.

2 2 *( ) ( ) 2Re[ ( ) ( )]E t E t E t E t dtτ τ
∞

−∞
= + − − −∫

Beam-
splitter

Input
pulse

Delay

2( ) ( ) ( )MIV E t E t dtτ τ
∞

−∞
∝ − −∫

2 *( ) 2 ( ) 2 Re ( ) ( )MIV E t dt E t E t dtτ τ
∞ ∞

−∞ −∞
∝ − −∫ ∫

∝ Pulse energy
(boring)

Field autocorrelation
(maybe interesting, but…) { The FT of the field 

autocorrelation is 
just the spectrum!

Slow 
detector

Mirror

E(t)

E(t–τ)

VMI(τ )
Mirror



Okay, so how do we measure a pulse?

Result: Using only time-independent, linear filters, complete 
characterization of a pulse is NOT possible with a slow detector.

Translation:  If you don't have a detector or modulator that is fast 
compared to the pulse width, you CANNOT measure the pulse 
intensity and phase with only linear measurements, such as a 
detector, interferometer, or a spectrometer.

V. Wong & I. A. Walmsley, Opt. Lett. 19, 287-289 (1994)
I. A. Walmsley & V. Wong, J. Opt. Soc. Am B, 13, 2453-2463 (1996) 

We need a shorter event, and we don’t have one.
But we do have the pulse itself, which is a start.  
And we can devise methods for the pulse to gate itself using 
optical nonlinearities.



Pulse Measurement in the Time Domain:  
The Intensity Autocorrelator

Crossing beams in an SHG crystal, varying the delay between them,
and measuring the second-harmonic (SH) pulse energy vs. delay 
yields the Intensity Autocorrelation: 

A(2) (τ ) ≡ I(t)I(t − τ ) dt
−∞

∞

∫

ESH (t,τ ) ∝ E(t)E(t − τ )
ISH (t,τ ) ∝ I(t)I(t −τ )Delay

Beam-splitter

Input
pulse

Aperture eliminates input pulses
and also any SH created by 
the individual input beams.
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Mirror
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The Intensity Autocorrelation:
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Square Pulse and Its Autocorrelation

Pulse Autocorrelation
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Gaussian Pulse and Its Autocorrelation

Pulse Autocorrelation
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Sech2 Pulse and Its Autocorrelation

Pulse Autocorrelation
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Since theoretical models for ideal ultrafast lasers usually predict sech2

pulse shapes, people usually simply divide the autocorrelation width by
1.54 and call it the pulse width.  Even when the autocorrelation is Gaussian…



Lorentzian Pulse and Its Autocorrelation

Pulse Autocorrelation
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Autocorrelations of more complex intensities

Autocorrelations nearly always have considerably less structure than the
corresponding intensity.
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An autocorrelation typically corresponds to more than one intensity.  
Thus the autocorrelation does not uniquely determine the intensity.



Even nice autocorrelations have ambiguities.

These complex intensities have nearly Gaussian 
autocorrelations.

Conclusions drawn from an autocorrelation are unreliable.

-80 -60 -40 -20 0 20 40 60 80

Intensity
Ambiguous Intensity

Time

Intensity

-150 -100 -50 0 50 100 150

Autocorrelation

Autocorrelation
Ambig Autocor
Gaussian

Delay



Autocorrelations of complex pulses: 
first consider a double pulse

Pulse Autocorrelation

A 2( ) τ( ) = A0
2( ) τ + τ sep( )+

2A0
2( ) τ( ) + A0
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Multi-shot Autocorrelations and “Wings”
The delay is scanned over many pulses, averaging over any variations
in the pulse shape from pulse to pulse.  So results can be misleading.

Imagine a train of pulses, each of which is a double pulse.
Suppose the double-pulse separation varies:

Infinite Train of Pulses Autocorrelation

τ
The locations of the side pulses in 
the autocorrelation vary from pulse
to pulse.  The result is “wings.”

“Wings”

“Coherence  
spike”

t
larger 

separation
smaller

separation
average 

separation

Wings also result if each pulse in the train has varying structure.
And wings can result if each pulse in the train has the same structure!
In this case, the wings actually yield the pulse width, and the central 
spike is called the “coherence spike.” Be careful with such traces.



Autocorrelation of Very Complex Pulses
Intensity Autocorrelation

As the intensity 
increases in 
complexity, its 
autocorrelation 
approaches a 
broad diffuse 
background 
with a 
coherence 
spike.



Third-Order Autocorrelation
Third-order nonlinear-optical effects pro-
vide the 3rd-order intensity autocorrelation:
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The third-order autocorrelation is not symmetrical, so it yields slightly 
more information, but not the full pulse.  Third-order effects are weaker, 
so it’s less sensitive and is used only for amplified pulses (> 1 µJ).





Pulse Measurement in the Time Domain: 
The Interferometric Autocorrelator
What if we use a collinear beam geometry, and allow the autocorrelator
signal light to interfere with the SHG from each individual beam?

Developed by 
J-C Diels

IA(2)(τ ) ≡ [E(t) + E(t − τ )]2 2
dt
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∞

∫
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New
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Mirror
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Michelson 
Interferometer

Diels and Rudolph, 
Ultrashort Laser 
Pulse Phenomena, 
Academic Press, 
1996.

Also called the “Fringe-Resolved Autocorrelation”



Interferometric Autocorrelation Math
The measured intensity vs. delay is:

IA(2)(τ ) ≡ E2 (t) + E2 (t − τ ) + 2E( t)E(t − τ )[ ] E*2 (t) + E*2( t −τ ) + 2E* (t)E* (t − τ)[ ]dt
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2
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The Interferometric Autocorrelation is the
sum of four different quantities.

= I2(t) + I2(t −τ ) dt
−∞

∞

∫ Constant (uninteresting)

+ 4 I(t)I(t −τ )
−∞

∞

∫ dt Intensity autocorrelation

+ 2 I(t) + I(t − τ )[ ]E(t)E* (t − τ) dt + c.c
−∞

∞

∫ Sum-of-intensities-weighted ω
“interferogram” of E(t) ω
(oscillates at ω in delay)

+ E2( t)E2*(t −τ ) dt + c.c.
−∞

∞

∫ Interferogram of the second harmonic;
equivalent to the spectrum of the SH ω
(oscillates at 2ω in delay)

The interferometric autocorrelation simply combines several measures
of the pulse into one (admittedly complex) trace. Conveniently, however,
they occur with different oscillation frequencies:  0, ω, and 2ω.





Interferometric Autocorrelation and Stabilization

To resolve the ω and 2ω fringes, which are spaced by only λ and λ/2, 
we must actively stabilize the apparatus to cancel out vibrations, which ω
perturb the delay by many λ.

Interferometric Autocorrelation Traces for a Flat-phase Gaussian pulse:

Without stabilization
Pulse
length

With stabilization

C. Rulliere, 
Femtosecond 
Laser Pulses, 

Springer, 
1998.

Fortunately, it’s not always necessary to resolve the fringes.



Interferometric Autocorrelation:  Examples
The extent of the fringes (at ω and 2ω) indicates the approximate width of
the interferogram, which is the coherence time.  If it’s the same as the ω
width of the the low-frequency component, which is the intensity ω
autocorrelation, then the pulse is near-Fourier-transform limited. ω

Unchirped pulse (short)

~ Coherence
time

~ Pulse
length

Chirped pulse (long)

~ Coherence
time

~ Pulse
length

These 
pulses
have 

identical
spectra,

and hence
identical

coherence 
times.

Solid black lines have been added.
They trace the intensity autocorrelation 

component (for reference).

C. Rulliere, 
Femtosecond 
Laser Pulses, 

Springer, 
1998.

The interferometric autocorrelation nicely reveals the approximate pulse
length and coherence time, and, in particular, their relative values.



Does the interferometric autocorrelation yield 
the pulse intensity and phase?

No. The claim has been made that the Interferometric Autocorrelation, 
combined with the pulse interferogram (i.e., the spectrum), could do so 
(except for the direction of time).

Naganuma, IEEE J. Quant. Electron. 25, 1225-1233 (1989).

But the required iterative algorithm rarely converges.

The fact is that the interferometric autocorrelation yields little more 
information than the autocorrelation and spectrum.

We shouldn’t expect it to yield the full pulse intensity and phase.  Indeed, 
very different pulses have very similar interferometric autocorrelations.



More Pulses with Similar Interferometric Autocorrelations
Without trying to find ambiguities, we can try Pulses #3 and #4:

Intensity

Phase

τFWHM = 37fs

Pulse #3

Intensity

Phase
τFWHM= 28fs

Pulse #4

Chung and 
Weiner, 
IEEE JSTQE,
2001.

Interferometric Autocorrelations for Pulses #3 and #4

Difference:

#3 and #4

Despite very different pulse lengths, these pulses have nearly identical IAs.



Nonlinear fluorescence and absorption are also 
used for autocorrelation, interferometric or not.

Two-Photon Fluorescence

D. T. Reid, et al., Opt. Lett. 22, 233-235 (1997)

Two-Photon-Absorption Photodiodes

Dye

Filter

Dye
Filter

Region of
enhanced
TPF due to
pulse overlapSingle-shot:

Photo-detector 
that absorbs two 
photons of ω each,
but not one at ω

Multi-shot (must scan delay)

Resolving the sub-λ fringes yields interferometric autocorrelation; otherwise not.



The phase determines the pulse’s frequency 
(i.e., color) vs. time.

0( ) /t d dtω ω φ= −The instantaneous frequency:

Example: “Linear chirp” 
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We’d like to be able to measure,
not only linearly chirped pulses,
but also pulses with arbitrarily complex 
phases and frequencies vs. time.

time



Most people think of acoustic waves in 
terms of a musical score.

time
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It’s a plot of frequency vs. time, with info on top about intensity. 

The musical score lives in the “time-frequency domain.”



A mathematically rigorous form of the 
musical score is the “spectrogram.”

If E(t) is the waveform of interest, its spectrogram is:

2

( , ) ( ) ( ) exp( )E E t g t i t dtω τ τ ω
∞

−∞
Σ ≡ − −∫

where g(t-τ) is a variable-delay gate function and τ is the delay.

Without g(t-τ), ΣE(ω,τ) would simply be the spectrum.

The spectrogram is a function of ω and τ.

It is the set of spectra of all temporal slices of E(t).

The spectrogram is one of many time-frequency quantities, such 
as the Wigner Distribution, Wavelet Transform, and others.



g(t-τ)
E(t)

time0 τ

g(t-τ) contributes 
only intensity, not 
phase (i.e., color), 
to the signal pulse.

E(t) contributes 
phase (i.e., color), 

to the signal pulse.

E(t) g(t-τ)

The Spectrogram of a waveform E(t)

We must compute the spectrum of the product:  E(t) g(t-τ)

E(t) g(t-τ)

E(t)

g(t-τ) g(t-τ) gates out a 
piece of E(t), 
centered at τ.

Example:  
Linearly 
chirped 
Gaussian 
pulse

The spectrogram tells the color and intensity of E(t) at the time, τ.



Properties of the Spectrogram

Algorithms exist to retrieve E(t) from its spectrogram.

The spectrogram essentially uniquely determines the waveform 
intensity, I(t), and phase, φ(t).

There are a few ambiguities, but they’re “trivial.”

The gate need not be—and should not be—much shorter than E(t).
Suppose we use a delta-function gate pulse:

2
2( ) ( ) exp( ) ( ) exp( )E t t i t dt E iδ τ ω τ ωτ

∞

−∞
− − = −∫

2( )E τ= = The Intensity.
No phase information!

The spectrogram resolves the dilemma!  It doesn’t need the 
shorter event!  It temporally resolves the slow components and 
spectrally resolves the fast components.



Frequency-Resolved Optical Gating (FROG)

“Polarization Gate” Geometry

Nonlinear
medium (glass)

Pulse to be 
measured

Variable  
delay, τ

Camera Spec-
trometer

Beam
splitter

E(t)

E(t-τ)

Esig(t,τ) = E(t) |E(t-τ)|2

FROG involves gating the pulse with a variably delayed replica 
of itself in an instantaneous nonlinear-optical medium and then 
spectrally resolving the gated pulse vs. delay.

45°
polarization 

rotation

2

( , ) ( , ) exp( )FROG sigI E t i t dtω τ τ ω
∞

−∞
= −∫

Collaborator: 
Dan Kane

Use any ultrafast nonlinearity: Second-harmonic generation, etc.

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, Kluwer



FROG 2( , ) ( ) ( )sigE t E t E tτ τ∝ −

E(t-τ)E(t)

time0 τ

Signal pulse

2τ/3

|E(t-τ)|2 contributes 
only intensity, not 
phase (i.e., color), 
to the signal pulse.

E(t) contributes 
phase (i.e., color), 

to the signal pulse.
E(t-τ) gates out a  
piece of E(t), 
centered at 

about 2τ/3 
(for Gaussian 

pulses).

E(t) E(t-τ)
Signal pulse

The gating is more complex for complex pulses, but it still works. 
And it also works for other nonlinear-optical processes.

time



The FROG trace is a spectrogram of E(t).

Substituting for Esig(t,τ) in the expression for the FROG trace:

Esig(t,τ) ∝ E(t) |E(t–τ)|2

IFROG (ω,τ ) ∝ Esig(t,τ) exp(−iωt ) dt∫
2

yields:

IFROG (ω,τ ) ∝ E(t) g(t −τ ) exp(−iωt) dt∫
2

g(t–τ) =  |E(t–τ)|2where:

Unfortunately, spectrogram inversion algorithms require that 
we know the gate function, and that’s what we’re trying to find!



If Esig(t,τ), is the 1D Fourier transform with respect to Ω of some 
new signal field, , then:ˆ ( , )sigE t Ω

Consider FROG as a two-dimensional
phase-retrieval problem.

2
ˆ( , ) ( , ) exp( )FROG sigI E t i t i dt dω τ ω τ= Ω − − Ω Ω∫∫

and

The input pulse, E(t), is easily obtained from

2

( , ) ( , ) exp( )FROG sigI E t i t dtω τ τ ω= −∫

ˆ ˆ( , ) : ( ) ( ,0)sig sigE t E t E tΩ ∝

So we must invert this integral equation and solve for

This integral-inversion problem is the 2D phase-retrieval problem,
for which the solution exists and is (essentially) unique.
And simple algorithms exist for finding it.

ˆ ( , ).sigE t Ω



Generalized Projections
A projection maps the current guess for the waveform to 
the closest point in the constraint set.

2

( , ) ( , ) exp( )FROG sigI E t i t dtωτ τ ω∝ −∫

The 
Solution!

Initial guess 
for Esig(t,τ)

Set of Esig(t,τ) that satisfy the 
nonlinear-optical constraint: 

Esig(t,τ) ∝ E(t) |E(t–τ)|2

Set of Esig(t,τ) that satisfy 
the data constraint:

Convergence is guaranteed for convex sets, but generally occurs 
even with non-convex sets and in particular in FROG.



FROG Traces for Linearly Chirped Pulses
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Like a musical score, the FROG trace visually reveals the pulse 
frequency vs. time—for simple and complex pulses.



FROG Traces for More Complex Pulses
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FROG Measurements of a 4.5-fs Pulse!

Baltuska, 
Pshenichnikov, 
and Weirsma,
J. Quant. Electron., 
35, 459 (1999).



Using FROG to align a pulse compressor
The grating separation must be correct, or the pulse will be chirped 
and long.




FROG geometries:  Pros and Cons
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Relative 
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multiple 
pulses

Direction 
of time; 
Rel. phase 
of multiple 
pulses

Second-
harmonic
generation

most sensitive;
most accurate

Third-
harmonic
generation

tightly focused
beams

useful for UV &
transient-grating
experiments

Transient-
grating

simple, intuitive,
best scheme for 
amplified pulses

Polarization-
gate

Self-
diffraction

useful for UV



Can we simplify FROG?

2 alignment θ
parameters θ

(θ, φ) θ

SHG
crystal

Pulse to be 
measured

Variable  
delay

Camera
Spec-
trom-
eter

FROG has 3 sensitive alignment degrees of 
freedom (θ, φ of a mirror and also delay).

The thin crystal is also a pain.

1 alignment   
parameter θ
(delay) θ

Crystal must 
be very thin, 
which hurts 
sensitivity.

SHG
crystal

Pulse to be 
measured

Remarkably, we can design a FROG without these components!

Camera

Collaborators: 
Mark Kimmel, Selcuk 
Akturk, and Patrick 

O’Shea



We can greatly simplify FROG!

FROG:
Frequency-

Resolved
Optical
Gating

GRENOUILLE:
GRating-

Eliminated
No-nonsense

Observation of
Ultrafast
Incident

Laser
Light

E-fields

Winner, 
2003 

R&D100 
award

A single optic (a Fresnel biprism) replaces the entire delay line, and
a thick SHG crystal replaces both the thin crystal and spectrometer.



Single-Shot FROG and the Fresnel biprism
Crossing beams at a large angle maps delay onto transverse position.

Pulse #1

Pulse #2

Here, pulse #1 arrives
earlier than pulse #2
Here, pulse #1 and pulse #2
arrive at the same time

Here, pulse #1 arrives
later than pulse #2

This avoids manually scanning the delay.  But it still requires over-
lapping the beams in space (and time).  Here’s how we avoid even that:

Even better, this design 
is amazingly compact and 
easy to use, and it never 
misaligns!

Fresnel
biprism



The angular width of second harmonic varies 
inversely with the crystal thickness.

Suppose white light with a large divergence angle impinges on an SHG 
crystal. The SH generated depends on the angle. And the angular width of 
the SH beam created varies inversely with the crystal thickness.

Very thin crystal creates broad SH spectrum in all directions.
Standard autocorrelators and FROGs use such crystals.

Very
Thin
SHG

crystal

Thin crystal creates narrower SH spectrum in
a given direction and so can’t be used

for autocorrelators or FROGs.

Thin
SHG

crystal

Thick crystal begins to 
separate colors.

Thick
SHG crystalA very thick crystal acts like a

a spectrometer!  Why not replace the 
spectrometer in FROG with a very thick crystal? Very

thick crystal



GRENOUILLE Beam Geometry
Lens images position in crystal 

(i.e., delay, t) to horizontal 
position at camera

Top
view

Side
view

Cylindrical
lens

Fresnel
Biprism

Thick
SHG

Crystal

Imaging Lens

FT Lens

Yields a complete single-shot FROG.  Uses the standard FROG algorithm.  
Never misaligns. Is more sensitive. Measures spatio-temporal distortions!

Camera

Lens maps angle (i.e.,
wavelength) to vertical

position at camera



GRENOUILLE FROG

M
ea

su
re

d
Re

tr
ie

ve
d

Testing 
GRENOUILLE

Compare a GRENOUILLE 
measurement of a pulse 
with a tried-and-true 
FROG measurement of the 
same pulse:

Retrieved pulse in the time and frequency domains



Spatio-temporal distortions in pulses
Prism pairs and simple tilted windows cause “spatial chirp.”

Prism pair

Gratings and prisms cause both spatial chirp and “pulse-front tilt.”



-τ0

+τ0

SHG
crystal

ω − δω

ω 

Signal pulse 
frequency

2ω + δω

2ω 

2ω − δω

Delay
Fr

eq
ue

nc
y

2ω+δω

2ω−δω

+τ0-τ0

ω + δω

ω − δωω 

Tilt in the otherwise symmetrical SHG 
FROG trace indicates spatial chirp!

ω + δω

ω 

Fresnel  
biprism

Spatially 
chirped 

pulse

GRENOUILLE measures spatial chirp.



GRENOUILLE measures pulse-front tilt.

Zero relative 
delay is off 
to side of 
the crystal

Zero relative 
delay is in 
the crystal 
centerSHG

crystal

An off-center trace indicates the pulse front tilt!



To learn more, visit our web sites…

www.physics.gatech.edu/frog

www.swampoptics.com

And if you read only one 
ultrashort-pulse-measurement 

book this year, make it this one!
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