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The 1999 Nobel Prize in Chemistry went to Professor
Ahmed Zewail of Cal Tech for ultrafast spectroscopy.

FEMTOCHEMISTRY

Ultrafast Dynamics of the
Chemical Bond

Zewalil used ultrafast-laser techniques to study how atoms in
a molecule move during chemical reactions.

Laikiné skyra: Simtai femtosekundziy I



The Dilemma

In order to measure
an event in time,
you need a shorter one.

To study this event, you need a
strobe light pulse that’s shorter.

Photograph taken by Harold Edgerton, MIT

But then, to measure the strobe light pulse,
you need a detector whose response time is even shorter.

And so on...

So, now, how do you measure the shortest event?



We must measure an ultrashort laser pulse’s
intensity and phase vs. time or frequency.

A laser pulse has the time-domain electric field:

E(t) = Re {I(t)V2 exp [iot—id(t) ]}

! !

Intensity Phase

(neglecting the
Equivalently, vs. frequency: negative-frequency
component)

E() = Re {S(0-0,)""2 exp [-i¢ (o-mo)] } -

! !

Spectrum Spectral
Phase

Knowledge of the intensity and phase or the spectrum and spectral phase
is sufficient to determine the pulse.



Pulse Measurement in the Time Domain: Detectors

Detectors are devices that emit electrons in response to photons.

Examples: Photo-diodes, Photo-multipliers
Detector

Detect

A e Another symbol A /
'. e for a detector: ’ I.

Detectors have very slow rise and fall times: ~ 1 nanosecond.

As far as we're concerned, detectors have infinitely slow responses.
They measure the time integral of the pulse intensity from —o to +oo:

Vdetector oC j |E(t)|2 dt

The detector output voltage is proportional to the pulse energy.
By themselves, detectors tell us little about a pulse.



Pulse Measurement in the Frequency Domain:
The Spectrometer

The spectrometer measures the spectrum, of course. Wavelength varies
across the camera, and the spectrum can be measured for a single pulse.

Broad- Entrance

band Slit
pulse o

Collimating
Mirror

Czerny-Turner Grating

arrangement
Focusing
H .
Mirror
Camera or

Linear Detector Array

“Imaging spectrometers” allow many spectra to be measured
simultaneously, one for each row of a 2D camera.



Pulse Measurement in the Time Domain:
The Michelson Interferometer ou
< pulse v

|(T)
E(t) NAL I'
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Vin @) o [ [E®—E(t-7)|" dt Mirror | —o S
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Beam- E(t-7) Slow
splitter detector
:Lo [E(t)|” +|E(t—7)|" —2Re[E()E"(t-7)] dt == | Delay
Mirror
= V(@) < 2] [E®[ dt - 2Re[ E(ME(t-7) dt
o« Pulse energy Field autocorrelation The FT of the field
boring) (maybe interesting, but...) autocorrelation Is
( ’ just the spectrum!

Measuring the interferogram is equivalent to measuring the spectrum.



Okay, so how do we measure a pulse?

Result: Using only time-independent, linear filters, complete
characterization of a pulse is NOT possible with a slow detector.

Translation: If you don't have a detector or modulator that is fast
compared to the pulse width, you CANNOT measure the pulse
intensity and phase with only linear measurements, such as a
detector, interferometer, or a spectrometer.

V. Wong & I. A. Walmsley, Opt. Lett. 19, 287-289 (1994)
l. A. Walmsley & V. Wong, J. Opt. Soc. Am B, 13, 2453-2463 (1996)

We need a shorter event, and we don’t have one.

But we do have the pulse itself, which is a start.

And we can devise methods for the pulse to gate itself using
optical nonlinearities



Pulse Measurement in the Time Domain:
The Intensity Autocorrelator

Crossing beams in an SHG crystal, varying the delay between them,
and measuring the second-harmonic (SH) pulse energy vs. delay
yields the Intensity Autocorrelation:

Input Aperture eliminates input pulses
| pulse and also any SH created by
Mirror the individual input beams.
Beam-splitter SHG l o
crystal ow
> E(:[)/\ | detector
A > II @)
Mirrors > E(t—T) I Vdet (T) oc A (T)
Lens — E (t,7) o« E(DE(t-1)
N - |De.ay = lgy(L,7) & 1)1 -7)

The Intensity Autocorrelation: | A7 (@) = J- [(D)I(t—7)dt
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Square Pulse and Its Autocorrelation

Pulse Autocorrelation
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Gaussian Pulse and Its Autocorrelation

Pulse Autocorrelation
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Sech? Pulse and Its Autocorrelation

Pulse Autocorrelation
AP (1) =
I(t) = sech? /027 3 271967 (271967
AtHWHM mwaw- coth e | — 1
p . o[ 271967 | Az, AT,
Slnh ATFWHM
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FWHM
Arp
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t T
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Since theoretical models for ideal ultrafast lasers usually predict sech?
pulse shapes, people usually simply divide the autocorrelation width by
1.54 and call it the pulse width. Even when the autocorrelation is Gaussian...



Lorentzian Pulse and Its Autocorrelation

Pulse Autocorrelation
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Autocorrelations of more complex intensities

Autocorrelations nearly always have considerably less structure than the
corresponding intensity.

Intensity Autocorrelation
III|""|""|""|""|"''|""|"":I DR T |

- Intensity . I [\ Autocorrelation
—— Ambiguous Intensity i o Ambiguous Autocorrelation
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Time

An autocorrelation typically corresponds to more than one intensity.
Thus the autocorrelation does not uniquely determine the intensity.



Even nice autocorrelations have ambiguities.

These complex intensities have nearly Gaussian
autocorrelations.

Intensity Autocorrelation

Autocorrelation
- Ambig Autocor
Gaussian

Intensity
Ambiguous Intensity

-80 60 -40 -20 0O 20 40 60 80 -150 -10 -50 0 50 10 150

Conclusions drawn from an autocorrelation are unreliable.



Autocorrelations of complex pulses:
first consider a double pulse

Pulse Autocorrelation

AP (7) = Am(z' + rsep)+

1(t) = 1) + l(t+7g,) 2AP() + AP (o - 7

| |
JCDK /XW[\/\,

where: A (r) = j ,(t) 1,(t—7)dt



Multi-shot Autocorrelations and “Wings”

The delay is scanned over many pulses, averaging over any variations
in the pulse shape from pulse to pulse. So results can be misleading.

Imagine a train of pulses, each of which is a double pulse.
Suppose the double-pulse separation varies:

Infinite Train of Pulses Autocorrelation

“Coherence
M /\/spike”
J &
A ot st e,
average larger smaller The locations of the side pulses in

separation separation separation the autocorrelation vary from QU|39
to pulse. The result is “wings.

Wings also result if each pulse in the train has varying structure.
And wings can result if each pulse in the train has the same structure!

In this case, the wings actually yield the pulse width, and the central
spike is called the “coherence spike.” Be careful with such traces.



Autocorrelation of Very Complex Pulses

As the intensity
increases in
complexity, its
autocorrelation
approaches a
broad diffuse
background
with a
coherence
spike.
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Third-Order Autocorrelation Note the 2

Third-order nonlinear-optical effects pro- = j 1°(t)1(t— 7) dt
vide the 3rd-order intensity autocorrelation: _
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The Is not symmetrical, so it yields slightly

more information, but not the full pulse. Third-order effects are weaker,
so it's less sensitive and is used only for amplified pulses (> 1 uJ).
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Pulse Measurement in the Time Domain:
The Interferometric Autocorrelator

What if we use a collinear beam geometry, and allow the autocorrelator
signal light to interfere with the SHG from each individual beam?

Michelson _< Input Developed by
Interferometer pulse Lens Crystal Filter Slow J-C Diels
E(t) detector Diels and Rudolph,
Mirror I—H I Ultrashort Laser
Pulse Phenomena,
Beam’” E(t- E ty+ E(t—7 rovaiiaiie
splitter (t=2) E(t)+ E(t—17) [E®+EC-2]"
— o0
. Delay o -
Mirror IA?(r) = | |[Et) +Et- | dt
New <+ Usual
terms = Autocor-
relation

IAY () = I | E*(t)+ E*(t— 1) + 2E(t)E(t - r)|2 dt term

Also called the “Fringe-Resolved Autocorrelation”



Interferometric Autocorrelation Math

The measured intensity vs. delay is:
IA?(7) = I [E*(t)+ E*(t— 7)+ 2E(DE(t - 7) [[E* () + E™(t— ) +2E"(DE (t - o) ] dt

Multiplying this out:

o0

AP (1) = {|E2(t)|2+ E*t)E(t—7) + 2E’()E () E (t—17) +
= EX(t-7)E™(t) + |[E (- 2| + 2E%(t - 1)E"(DE (t- 1) +
2EME( - DE™(t) + 2E(DE(t— 0)E ™ (t— 1) +4|E(t)|’| Et —r)lz}dt
— {1PM+ EPME (t-7) + 2I(DEME (t—7) +
= E(t-7)E(t) + P(t—10)+ 21(t— 0)E (ODE(t-7)+
21(DE(-0)E (1) + 21(t—)EME (t—7) +41(1)I(t—7)}dt

where () =|E(b)|’



The Interferometric Autocorrelation is the
sum of four different quantities.

= j‘ 1*(t)+ 1°(t—7) dt Constant (uninteresting)

+ 4-“ ()1t —7)dt Intensity autocorrelation

: ) Sum-of-intensities-weighted
+ 21 [lO+1t-7)]EQE (t-2)dt + cC  “interferogram” of E(t)
o (oscillates at w in delay)

) Yo Interferogram of the second harmonic;
+ E()E" (t-7)dt + cC.  gquivalent to the spectrum of the SH
e (oscillates at 2w in delay)

The interferometric autocorrelation simply combines several measures
of the pulse into one (admittedly complex) trace. Conveniently, however,
they occur with different oscillation frequencies: 0, », and 2w.
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Interferometric Autocorrelation and Stabilization

To resolve the w and 2w fringes, which are spaced by only A and A/2,
we must actively stabilize the apparatus to cancel out vibrations, which
perturb the delay by many A.

Interferometric Autocorrelation Traces for a Flat-phase Gaussian pulse:

With stabilization Without stabilization

IPU|S’[eh . C. Rulliere,
R _eng 08 Femtosecond
g =40fs g Laser Pulses,
! 06+ Springer,
§ i ) N 1998.
a g%
: WWWWW J WWWW\“W oo
or ., e 001 : :
-100 -50 0 50 100 - - 100

Fortunately, it's not always necessary to resolve the fringes.



Interferometric Autocorrelation: Examples

The extent of the fringes (at w and 2w) indicates the approximate width of
the interferogram, which is the coherence time. If it's the same as the
width of the the low-frequency component, which is the intensity
autocorrelation, then the pulse is near-Fourier-transform limited.
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Solid black lines have been added.
They trace the intensity autocorrelation

' Ioc. I0 1100 2T00 3}; 4'00
Delay (fs) C. Rulliere,
Femtosecond
Laser Pulses,
Springer,
1998.

The interferometric autocorrelation nicely reveals the approximate pulse
length and coherence time, and, in particular, their relative values.



Does the interferometric autocorrelation yield
the pulse intensity and phase?

No. The claim has been made that the Interferometric Autocorrelation,
combined with the pulse interferogram (i.e., the spectrum), could do so
(except for the direction of time).

Naganuma, IEEE J. Quant. Electron. 25, 1225-1233 (1989).

But the required iterative algorithm rarely converges.

The fact is that the interferometric autocorrelation yields little more
information than the autocorrelation and spectrum.

We shouldn’t expect it to yield the full pulse intensity and phase. Indeed,
very different pulses have very similar interferometric autocorrelations.



More Pulses with Similar Interferometric Autocorrelations

Without trying to find ambiguities, we can try Pulses #3 and #4:
Pulse #3 Pulse #4

Intensity 101 /\ N
Ly / \\ / \\ 1
: ] i/ / 7
R T PR =AY D
: = < | Phase \\J/ \ =
Tewuy = 37fs Tewuu= 28fs |
Intensity

-2 T T
200 -200 -100 0 100 200

time {fs)

Interferometric Autocorrelations for Pulses #3 and #4

) #3 and #4 ULHU;”
3 N SR & lf Chung and
A S Weiner,
§ IEEE JSTQE,
2001.

0
Difference; ——wms . ——smmssippsr—— o

intensity (a.u.)

delay (fs)

Despite very different pulse lengths, these pulses have nearly identical IAs.



Nonlinear fluorescence and absorption are also
used for autocorrelation, interferometric or not.

Region of

/( enhanced
TPF due to

pulse overlap

Two-Photon Fluorescence

Single-shot:
Multi-shot (must scan delay) )\_

M |:|_‘/ Filter

Pve -
Two-Photon-Absorption Photodiodes

Photo-detector b e
A- A . that absorbs two : "B= SRS e gy

/

=
B
> photons of ® each, ‘E ”é sz #r
but not one at ® P B
2 e

D. T. Reid, et al., Opt. Lett. 22, 233-235 (1997) ' o i T 1} W ]

1 B - 0 h i
Arei B pOWar (M)

Resolving the sub-A fringes yields interferometric autocorrelation; otherwise not.



The phase determines the pulse’s frequency
(i.e., color) vs. time.

The instantaneous frequency: ‘ o(t)=w,—dg¢/dt ‘

Example: “Linear chirp”

Phase, ¢(t)

[\

Frequency, o(t)

time

~

time

Light electric field

Time

We'd like to be able to measure,

not only linearly chirped pulses,

but also pulses with arbitrarily complex
phases and frequencies vs. fime.



Most people think of acoustic waves in
terms of a musical score.

T pp ff pp
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It's a plot of frequency vs. time, with info on top about intensity.

The musical score lives in the "time-frequency domain.”




A mathematically rigorous form of the
musical score is the “spectrogram.”

If E(t) is the waveform of interest, its spectrogram is:

2 (w,7) = on E(t) g(t —7) exp(—lwt) dt

where ¢(t-7) is a variable-delay gate function and t is the delay.

Without g(t-7), Zc(o,t) would simply be the spectrum.

The spectrogram is a function of ® and .
It is the set of spectra of all temporal slices of E(t).

The spectrogram is one of many time-frequency quantities, such
as the Wigner Distribution, Wavelet Transform, and others.




The Spectrogram of a waveform E(t)

We must compute the spectrum of the product: E(t) g(t-7)

E(t)
Example: g(t-7) g(t-7) gates out a
Linearly piece of E(t),
chirped \ l centered at .
Gaussian
pulse /
| —E®gt
| E—
0 . time —»

The spectrogram tells the color and intensity of E(t) at the time, t.



Properties of the Spectrogram

Algorithms exist to retrieve E(t) from its spectrogram.

The spectrogram essentially uniquely determines the waveform
intensity, I(t), and phase, #1).
There are a few ambiguities, but they're “trivial."
The gate need not be—and should not be—much shorter than E(t).
Suppose we use a delta-function gate pulse:

2

= ‘ E(7) exp(—iw7) ‘ ’

j TE() (= 7) exp(—iat) dt

= ‘E(T)‘z = The Intensity.
No phase information!
The spectrogram resolves the dilemmal It doesn't need the

shorter event! It temporally resolves the slow components and
spectrally resolves the fast components.



FROG involves gating the pulse with a variably delayed replica
of itself in an instantaneous nonlinear-optical medium and then

spectrally resolving the gated pulse vs. delay.
Collaborator:

Pulse to be DI [R50

measured

2

Beam | eroc (@,7) = _Lo Esig (t,7)exp(—lwt)dt

5p|i’r’rer' 45°

polarization
rotation

Variable E(t) Nonlinear
delay, 7 medium (glass)

Use any ultrafast nonlinearity: Second-harmonic generation, etc.

R. Trebino, Freguency-Resolved Optical Gating: The Measurement of Ultrashort Laser FPulses, Kluwer



FROG . (t,7) o E() [E(t—17)|

E(t) Signal pulse

\

E(t-7)

E(t-7) gates out a
piece of E(t),
centered at
about 21/3
(for Gaussian
pulses).

The gating is more complex for complex pulses, but it still works.
And it also works for other nonlinear-optical processes.

«

mn



Substituting for Eg(t,7) in the expression for the FROG trace:

Egig(t,2) o E(F) [E(t=7)[°

2

lcros (@,T) oc

J‘ /
E,, (1, 7) exp(—lot) dt

yields:

2

| ros (@,7) o

j E(t) g(t—7) exp(—iwt) dt

where: g(t-7) = |E(t-7)|?

Unfortunately, spectrogram inversion algorithms require that
we know the gate function, and that's what we're trying to find!



The input pulse, E(t), is easily obtained from E (t,Q): E(t) o« E,(t,0)

sig

and
2

| noc (0, 7) = HEsig (t,7) exp(—lwt) dt
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FROG Measurements of a 4.5-fs Pulse!

Experimental Reconstructed
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Using FROG to align a pulse compressor
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FROG geometries: Pros and Cons

Sensitivity Ambiquities

Second- o
harmonic  SHG —————f=="7 /A2 0010l
generation ® 3 Pr
Third- N
harmonic THG W? 39 1nd
generation X“(3) Pr
Transient- ® S s>
grating TG 0 —=| Pr 10 nd
e
WP ool
‘ . o T Q)
gP;)tI:rlzatlon- PG z - =" 100 nJ
Pol ()
.é>~>
O_-
Self o [l.==""% Pr 1000 n
diffraction ~ SD —

Direction
of time;
Rel. phase
of multiple
pulses

Relative
phase of
multiple

pulses

None

None

most sensitive;
most accurate

tightly focused
beams

useful for UV &
transient-grating
experiments

simple, intuitive,
best scheme for
amplified pulses

useful for UV



Collaborators:

Can we Simplify FROG? Mark Kimmel, Selcuk

Akturk, and Patrick
O'Shea

Pulse to be
measured

_/\_> Camera

Remarkably, we can desigh a FROG without these components!



-
Variable
delay

Input
e —

pulse

Cylindrical |
lens

Second-harmonic-

generation crystal Camera _

Crystal must
be very thin

Thick
SHG Cylindrical

Fresnel
crystal lenses

biprism




Single-Shot FROG and the Fresnel biprism

Pulse #1

Fresnel
biprism

Here, pulse #1 arrives
earlier than pulse #2

Here, pulse #1 and pulse #2
arrive at the same time

Here, pulse #1 arrives
later than pulse #2



Suppose white light with a large divergence angle impinges on an SHG
crystal. The SH generated depends on the angle. And the angular width of
the SH beam created varies inversely with the crystal thickness.
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SHG
crystal

Very thin crystal creates broad SH spectrum in all directions.
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SHG
crystal

A very thick crystal acts like a

a spectrometer! Why not replace the

| Standard autocorrelators and FROGs use such crystals.

Thin crystal creates narrower SH spectrum in
a given direction and so can't be used
for autocorrelators or FROGs.

Thick crystal begins to

/
% / separate colors.
=

L
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Thick % /
SHG crystal —
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spectrometer in FROG with a very thick crystal? ' @ Very

thick crystal



GRENOUILLE Beam Geometry

T="1(X)

Cylindrical Fresnel  Thick
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. Crystal
Side
view

Lens images position in crystal
(i.e., delay, 1) to horizontal
position at camera

Can place slit here to
filter out other beams

W
f Imaging Lens f

Camera

FTlens | ens maps angle (ie.,

wavelength) to vertical
position at camera




FROG
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Prism pair Tilted window

Input pulse
el Input pulse 0

Spatially chirped Spatially chirped
output pulse output pulse

' ' O DUISE . o
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Input pulse 5 W— ; Spatially chirped
> . ________ and tilted output
pulse

Diffraction grating
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Tilt in the otherwise symmetrical SHG
FROG trace indicates spatial chirp!
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GRENOUILLE measures pulse-front tilt.

\ y Zero relative
delay is of f
to side of
the crystal

Zero relative
delay is in
the crystal
SHG center
crystal

An of f-center trace indicates the pulse front tilt!
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And if you read only one
ultrashort-pulse-measurement
book this year, make it this one!

Rick Trebino
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